Инконель, после того, что с ним вытворяли в процессе изготовления двигателя гарантированно должен был лопаться еще до того, как тепло дойдет до керосина.
А это уже новый (по крайней мере для меня) аргумент: Вы уже опровергаете и технологический процесс изготовления камер сгорания? Давайте разберемся. Итак, согласно стр. 22 технического бюллетеня (ТБ) сплава "Инконель X-750" ( который можно скачать с
Special Metals :: 100 Years of Innovation ), рекомендуемый температурный интервал горячей обработки этого сплава – 1800°–2200°F (982°–1204°C). Пайка в печи камеры сгорания происходила при температуре 1260°C (
chapter 4 ). Это, конечно, немного выше 1204°C, но с другой стороны, при пайке механического воздействия на сплава нет. Что там ещё по-Вашему "вытворяли в процессе изготовления двигателя"?
1) Из инконеля, который уже сделан, прокатывали полосу. Это очевидно пластическая деформация.
2) Из полосы прокатывали трубку. Пластическая деформация
3) Шов трубки сваривали. Термомеханические напряжения масштаба напряжений пластической деформации
4) При пайке серебряным припоем из-за существенной разности коэффициентов линейного термического расширения инконеля и серебра на стыке инконелевой трубки с припоем - термомеханические напряжения масштаба напряжений пластической деформации
5) При пробных пусках двигателя на стыках с серебряным припоем напряжения масштаба напряжений пластической деформации.
6) При рабочем включении двигателя опять напряжения масштаба пластической деформации.
К пластическим деформациям мы еще вернемся.
А пока о температурном режиме горячей обработки.
В моей статье приведен график зависимости жаропрочности никелевых сплавов от объемного содержания гамма-штрих фазы. Вы видите, как быстро падает жаропрочность с ростом температуры и как сильно она зависит от содержания гамма-штрих фазы.
Крайняя верхняя температура обработки имеет следующее физическое значение. При этой температуре начинает интенсивно растворяться гамма-штрих фаза. Возникшая ранее прочность снижается за счет снижения объемного содержания гамма-штрих фазы. Материал становится мягче, пластичнее, меньше сопротивляется механическим нагрузкам, заложенным в расчете.
В 1960-е даже этого не знали.
Но только этим эффектом и определяется назначение верхней температуры.
И даже его влияние создатели Ф-1 нарушили пайкой. На границе с припоем материал существенно лишился прочности. Причем сами они это фиксировали в виде образования на границе с припоем окислов титана и алюминия, без которых невозможна гамма-штрих фаза в этом сплаве. Техническая история программы это зафиксировала письменно.
Однако, есть и другой эффект, опасный для жаропрочного материала. Это охрупчивание и обазование сквозных межкристаллитных трещин. Преподаватель МХТИ, автор двухтомника по физике твердого тела, в отдельной книге по жаропрочным сплавам свидетельствует о попытках создания материалов с очень высоким, почти 100% содержанием гамма-штрих фазы в надежде на получение суперсплавов. Они просто разрушались по межкристаллитным границам.
В чем дело? Повышающие жаропрочность гамма-штрих фазы должны иметь чуть-чуть(на 0.1-0.2%) плотности решетки. Это из статьи акад. Н.Е.Каблова, написанной в 1998 году. Так вот, образование гамма-штрих фазы происходит за счет перехода атомов основной решетки в более плотную. В основной решетке остаются пустоты. При 10% содержания гамма-штрих фазы она в каждом направлении занимает около 50% линейного размера, отбирая не слишком много лишних атомов в свою структуру.
Когда этой фазы становится больше, они начинают объединяться в микропоры и микротрещины. По достижении определенной плотности пор и микротрещин, они соединяются в сплошные макротрещины. И материал просто лопается. Сам, без нагрузок.
Но есть еще один очень важный эффект. Это рост гамма-штрих фазы под высокими механическими нагрузками. В приведенном мной примере из исследования лопаток Якутской ГРЭС средние размеры частиц гамма-штрих фазы выросли с 80 нм до 156 нм. Это соответствует росту объема фазы в 8 раз. Если бы они росли только за счет основной фазы, ее бы просто не хватило. Частично этот рост за счет коагуляции. Но все равно в результате приближение к состоянию, когда в новую фазу перешел почти каждый десятый атом из основной фазы вдоль каждой координаты.
Ну а это как раз и является условием соединения пор и микротрещин в макротрещины и разрушения ЛЮБЫХ МАТЕРИАЛОВ при весьма несильных воздействиях. Оно известно из советских исследований 80-х по проверке кинетической теории прочности
Замечу, что предложенная схема является новым словом в металлофизике жаропрочных никелевых сплавов. Фактически связную формулировку смог этому дать пока только я.
И это результат советских и российских исследований
Так вот, каждой операцией с серьезным пластическим деформированием или возникновением напряжений, близких к напряжениям пластической деформации, создатели и испытатели Ф-1 наращивали гамма-штрих фазу, доводя ее содержание в каких-то местах 900-метровой трубки до критического по хрупкому разрушению. Не по жаропрочности, а именно по хрупкости, по наличию внутренних трещин, превращающихся в сквозные при очередном воздействии.
Американцы здесь просто ничего не знают, поскольку в этой области у них очень слабая наука. Но и мы в понимании этого вопроса на грани знания. Первая статья на этот счет - моя в материалах конференции по нанотехнологиям в 2008 году.
Понимаете, я знаю, что Вы прекрасно можете пользоваться формальными материалами американцев.
Но, во-первых, работает эффект охрупчивания, который не имеет никакого отношения к температуре.
Во-вторых, высокие температуры, ослабляющие участки трубы уже по классической температурной схеме, реализовались в процессе работы над трубками по крайней мере
при пайке.
В-третьих, высокие температуры в паре с высокими напряжениями реализовались по меньшей мере при пайке и испытаниях.
В-четвертых, сами эксплуатационные температуры на стенке камеры сгорания выше расчетных из-за неизвестного в те годы американцам эффекта сверхадиабатического нагрева богатых углеводородных смесей(открыт в СССР в 1968 году). А при таком повышении температуры инконель с выбранной рабочей точкой 524 градуса на границе даже известного снижения прочности оказывается в области быстрого ухудшения прочностных свойств.
В-пятых, сама классическая жаропрочность того же инконеля - не равномерна по объему. Тем более, когда не имеешь понятия, какой параметр материала надо контролировать. Жаропрочность - вообще статистический параметр(акад.Каблов, 1998 год). Вероятность иметь на длине трубок 900 метров несколько участков существенно пониженной жаропрочности просто из-за неравномерности выделения гамма-штрих фазы в процессе создающей жаропрочность термообработки, из-за неравномерности распределения необходимых для этого примесей титана и алюминия, - вполне естественна.
Найдется и шестое, а может, и десятое.
Что по этому поводу говорят американцы и их инструкции мне глубоко безразлично. Я ученый, нашедший с высоты моего современного знания несколько проколов в их подходах.
168 секунд - это весьма немало, учитывая несколько перечисленных факторов ослабления материала.
Сплав "Инконель X-750" широко используется в камерах сгорания ЖРД и много где ещё (стр. 1 ТБ выше). Опровергая его, Вы опровергаете не только ЖРД "F-1", а и все остальные изделия (не только ЖРД), где он применяется.
Эксплуатация материала с учетом важных знаний, появившихся в мире уже по окончании разработки Ф-1 абсолютно ничего не исключает. Возникают понятия, что и как надо контролировать и регулировать в составе. Но все это уже результат 70-х и позже.